Topological characterization of the small cardinal $i$
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 745-750.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that the small cardinal number $i = \min \{\vert \Cal A \vert : \Cal A$ is a maximal independent family\} has the following topological characterization: $i = \min \{\kappa \leq c: \{0,1\}^{\kappa}$ has a dense irresolvable countable subspace\}, where $\{0,1\}^{\kappa}$ denotes the Cantor cube of weight $\kappa$. As a consequence of this result, we have that the Cantor cube of weight $c$ has a dense countable submaximal subspace, if we assume (ZFC plus $i=c$), or if we work in the Bell-Kunen model, where $i = {\aleph_{1}}$ and $c = {\aleph_{\omega_1}}$.
Classification : 54A05, 54A25, 54A35, 54B05, 54B10, 54C25
Keywords: independent family; irresolvable; submaximal
@article{CMUC_2003__44_4_a18,
     author = {Franco-Filho, Antonio de Padua},
     title = {Topological characterization of the small cardinal $i$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {745--750},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2003},
     mrnumber = {2062891},
     zbl = {1098.54003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a18/}
}
TY  - JOUR
AU  - Franco-Filho, Antonio de Padua
TI  - Topological characterization of the small cardinal $i$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 745
EP  - 750
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a18/
LA  - en
ID  - CMUC_2003__44_4_a18
ER  - 
%0 Journal Article
%A Franco-Filho, Antonio de Padua
%T Topological characterization of the small cardinal $i$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 745-750
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a18/
%G en
%F CMUC_2003__44_4_a18
Franco-Filho, Antonio de Padua. Topological characterization of the small cardinal $i$. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 745-750. http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a18/