Characterizing polyhedrons and manifolds
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 711-725.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In [5], W. Taylor shows that each particular compact polyhedron can be characterized in the class of all metrizable spaces containing an arc by means of first order properties of its clone of continuous operations. We will show that such a characterization is possible in the class of compact spaces and in the class of Hausdorff spaces containing an arc. Moreover, our characterization uses only the first order properties of the monoid of self-maps. Also, the possibility of characterizing the closed unit interval of the real line and some related objects in the category of partially ordered sets and monotonous maps will be illustrated.
Classification : 06F30, 08A68, 54C05, 54H15, 54H99
Keywords: monoids of continuous maps; clones
@article{CMUC_2003__44_4_a15,
     author = {Barkhudaryan, Arthur},
     title = {Characterizing polyhedrons and manifolds},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {711--725},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2003},
     mrnumber = {2062888},
     zbl = {1097.54041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a15/}
}
TY  - JOUR
AU  - Barkhudaryan, Arthur
TI  - Characterizing polyhedrons and manifolds
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 711
EP  - 725
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a15/
LA  - en
ID  - CMUC_2003__44_4_a15
ER  - 
%0 Journal Article
%A Barkhudaryan, Arthur
%T Characterizing polyhedrons and manifolds
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 711-725
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a15/
%G en
%F CMUC_2003__44_4_a15
Barkhudaryan, Arthur. Characterizing polyhedrons and manifolds. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 711-725. http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a15/