Best approximations and porous sets
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 681-689.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $D$ be a nonempty compact subset of a Banach space $X$ and denote by $S(X)$ the family of all nonempty bounded closed convex subsets of $X$. We endow $S(X)$ with the Hausdorff metric and show that there exists a set $\Cal F \subset S(X)$ such that its complement $S(X) \setminus \Cal F$ is $\sigma$-porous and such that for each $A\in \Cal F$ and each $\tilde x\in D$, the set of solutions of the best approximation problem $\|\tilde x-z\| \to \min$, $z \in A$, is nonempty and compact, and each minimizing sequence has a convergent subsequence.
Classification : 41A50, 41A52, 41A65, 49K40, 54E35, 54E50, 54E52
Keywords: Banach space; complete metric space; generic property; Hausdorff metric; nearest point; porous set
@article{CMUC_2003__44_4_a11,
     author = {Reich, Simeon and Zaslavski, Alexander J.},
     title = {Best approximations and porous sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {681--689},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2003},
     mrnumber = {2062884},
     zbl = {1096.41022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a11/}
}
TY  - JOUR
AU  - Reich, Simeon
AU  - Zaslavski, Alexander J.
TI  - Best approximations and porous sets
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 681
EP  - 689
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a11/
LA  - en
ID  - CMUC_2003__44_4_a11
ER  - 
%0 Journal Article
%A Reich, Simeon
%A Zaslavski, Alexander J.
%T Best approximations and porous sets
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 681-689
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a11/
%G en
%F CMUC_2003__44_4_a11
Reich, Simeon; Zaslavski, Alexander J. Best approximations and porous sets. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 681-689. http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a11/