Lattices and semilattices having an antitone involution in every upper interval
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 577-585.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study $\vee$-semilat\/tices and lat\/tices with the greatest element 1 where every interval [p,1] is a lat\/tice with an antitone involution. We characterize these semilat\/tices by means of an induced binary operation, the so called sectionally antitone involution. This characterization is done by means of identities, thus the classes of these semilat\/tices or lat\/tices form varieties. The congruence properties of these varieties are investigated.
Classification : 06A12, 06C15, 06F35, 08B05, 08B10
Keywords: semilat\/tice; lat\/tice; antitone involution; congruence permutability; weak regularity
@article{CMUC_2003__44_4_a1,
     author = {Chajda, Ivan},
     title = {Lattices and semilattices having an antitone involution in every upper interval},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {577--585},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2003},
     mrnumber = {2062874},
     zbl = {1101.06003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a1/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Lattices and semilattices having an antitone involution in every upper interval
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 577
EP  - 585
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a1/
LA  - en
ID  - CMUC_2003__44_4_a1
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Lattices and semilattices having an antitone involution in every upper interval
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 577-585
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a1/
%G en
%F CMUC_2003__44_4_a1
Chajda, Ivan. Lattices and semilattices having an antitone involution in every upper interval. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 4, pp. 577-585. http://geodesic.mathdoc.fr/item/CMUC_2003__44_4_a1/