An inequality in Orlicz function spaces with Orlicz norm
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 507-514.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We use Simonenko quantitative indices of an $\Cal N$-function $\Phi$ to estimate two parameters $q_\Phi$ and $Q_\Phi$ in Orlicz function spaces $L^\Phi[0,\infty)$ with Orlicz norm, and get the following inequality: $\frac{B_\Phi}{B_\Phi-1}\leq q_\Phi\leq Q_\Phi\leq \frac{A_\Phi}{A_\phi-1}$, where $A_\Phi$ and $B_\Phi$ are Simonenko indices. A similar inequality is obtained in $L^\Phi [0,1]$ with Orlicz norm.
Classification : 46B20, 46E30
Keywords: Orlicz spaces; Simonenko indices; $\triangle_2$-condition
@article{CMUC_2003__44_3_a8,
     author = {Wang, Jincai},
     title = {An inequality in {Orlicz} function spaces with {Orlicz} norm},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {507--514},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2003},
     mrnumber = {2025816},
     zbl = {1103.46011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_3_a8/}
}
TY  - JOUR
AU  - Wang, Jincai
TI  - An inequality in Orlicz function spaces with Orlicz norm
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 507
EP  - 514
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_3_a8/
LA  - en
ID  - CMUC_2003__44_3_a8
ER  - 
%0 Journal Article
%A Wang, Jincai
%T An inequality in Orlicz function spaces with Orlicz norm
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 507-514
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_3_a8/
%G en
%F CMUC_2003__44_3_a8
Wang, Jincai. An inequality in Orlicz function spaces with Orlicz norm. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 507-514. http://geodesic.mathdoc.fr/item/CMUC_2003__44_3_a8/