Iterates of a class of discrete linear operators via contraction principle
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 555-563.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we are concerned with a general class of positive linear operators of discrete type. Based on the results of the weakly Picard operators theory our aim is to study the convergence of the iterates of the defined operators and some approximation properties of our class as well. Some special cases in connection with binomial type operators are also revealed.
Classification : 41A36, 47H10
Keywords: linear positive operators; contraction principle; weakly Picard operators; delta operators; operators of binomial type
@article{CMUC_2003__44_3_a12,
     author = {Agratini, Octavian and Rus, Ioan A.},
     title = {Iterates of a class of discrete linear operators via contraction principle},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {555--563},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2003},
     mrnumber = {2025820},
     zbl = {1096.41015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_3_a12/}
}
TY  - JOUR
AU  - Agratini, Octavian
AU  - Rus, Ioan A.
TI  - Iterates of a class of discrete linear operators via contraction principle
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 555
EP  - 563
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_3_a12/
LA  - en
ID  - CMUC_2003__44_3_a12
ER  - 
%0 Journal Article
%A Agratini, Octavian
%A Rus, Ioan A.
%T Iterates of a class of discrete linear operators via contraction principle
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 555-563
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_3_a12/
%G en
%F CMUC_2003__44_3_a12
Agratini, Octavian; Rus, Ioan A. Iterates of a class of discrete linear operators via contraction principle. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 3, pp. 555-563. http://geodesic.mathdoc.fr/item/CMUC_2003__44_3_a12/