Perfect sets and collapsing continuum
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 315-327.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Under Martin's axiom, collapsing of the continuum by Sacks forcing $\Bbb S$ is characterized by the additivity of Marczewski's ideal (see [4]). We show that the same characterization holds true if $\frak d=\frak c$ proving that under this hypothesis there are no small uncountable maximal antichains in $\Bbb S$. We also construct a partition of $^\omega 2$ into $\frak c$ perfect sets which is a maximal antichain in $\Bbb S$ and show that $s^0$-sets are exactly (subsets of) selectors of maximal antichains of perfect sets.
Classification : 03E17, 03E40, 03E50, 54A35
Keywords: Sacks forcing; Marczewski's ideal; cardinal invariants
@article{CMUC_2003__44_2_a9,
     author = {Repick\'y, Miroslav},
     title = {Perfect sets and collapsing continuum},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {315--327},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2003},
     mrnumber = {2026166},
     zbl = {1104.03045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a9/}
}
TY  - JOUR
AU  - Repický, Miroslav
TI  - Perfect sets and collapsing continuum
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 315
EP  - 327
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a9/
LA  - en
ID  - CMUC_2003__44_2_a9
ER  - 
%0 Journal Article
%A Repický, Miroslav
%T Perfect sets and collapsing continuum
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 315-327
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a9/
%G en
%F CMUC_2003__44_2_a9
Repický, Miroslav. Perfect sets and collapsing continuum. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 315-327. http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a9/