Strongly base-paracompact spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 307-314.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A space $X$ is said to be {\it strongly base-paracompact\/} if there is a basis $\Cal B$ for $X$ with $|\Cal B|=w(X)$ such that every open cover of $X$ has a star-finite open refinement by members of $\Cal B$. Strongly paracompact spaces which are strongly base-paracompact are studied. Strongly base-paracompact spaces are shown have a family of functions $\Cal{F}$ with cardinality equal to the weight such that every open cover has a locally finite partition of unity subordinated to it from $\Cal F$.
Classification : 54D20
Keywords: base-paracompact; strongly base-paracompact; partition of unity; Lindelöf spaces
@article{CMUC_2003__44_2_a8,
     author = {Porter, John E.},
     title = {Strongly base-paracompact spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {307--314},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2003},
     mrnumber = {2026165},
     zbl = {1099.54021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a8/}
}
TY  - JOUR
AU  - Porter, John E.
TI  - Strongly base-paracompact spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 307
EP  - 314
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a8/
LA  - en
ID  - CMUC_2003__44_2_a8
ER  - 
%0 Journal Article
%A Porter, John E.
%T Strongly base-paracompact spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 307-314
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a8/
%G en
%F CMUC_2003__44_2_a8
Porter, John E. Strongly base-paracompact spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 307-314. http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a8/