A canonical Ramsey-type theorem for finite subsets of $\Bbb N$
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 235-243.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

T. Brown proved that whenever we color $\Cal P_{f} (\Bbb N)$ (the set of finite subsets of natural numbers) with finitely many colors, we find a monochromatic structure, called an arithmetic copy of an $\omega $-forest. In this paper we show a canonical extension of this theorem; i.e\. whenever we color $\Cal P_{f}(\Bbb N)$ with arbitrarily many colors, we find a canonically colored arithmetic copy of an $\omega $-forest. The five types of the canonical coloring are determined. This solves a problem of T. Brown.
Classification : 05C55, 05D05, 05D10
Keywords: canonical coloring; forests; van der Waerden's theorem; arithmetic progression
@article{CMUC_2003__44_2_a4,
     author = {Piguetov\'a, Diana},
     title = {A canonical {Ramsey-type} theorem for finite subsets of $\Bbb N$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {235--243},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2003},
     mrnumber = {2026161},
     zbl = {1099.05510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a4/}
}
TY  - JOUR
AU  - Piguetová, Diana
TI  - A canonical Ramsey-type theorem for finite subsets of $\Bbb N$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 235
EP  - 243
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a4/
LA  - en
ID  - CMUC_2003__44_2_a4
ER  - 
%0 Journal Article
%A Piguetová, Diana
%T A canonical Ramsey-type theorem for finite subsets of $\Bbb N$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 235-243
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a4/
%G en
%F CMUC_2003__44_2_a4
Piguetová, Diana. A canonical Ramsey-type theorem for finite subsets of $\Bbb N$. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 235-243. http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a4/