On the local moduli space of locally homogeneous affine connections in plane domains
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 229-234.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification of locally homogeneous affine connections in two dimensions is a nontrivial problem. (See \cite{5} and \cite{7} for two different versions of the solution.) Using a basic formula by B. Opozda, \cite{7}, we prove that all locally homogeneous torsion-less affine connections defined in open domains of a 2-dimensional manifold depend essentially on at most 4 parameters (see Theorem 2.4).
Classification : 53B05, 53C30
Keywords: two-dimensional manifolds with affine connection; locally homogeneous connections
@article{CMUC_2003__44_2_a3,
     author = {Kowalski, Old\v{r}ich and Vl\'a\v{s}ek, Zden\v{e}k},
     title = {On the local moduli space of locally homogeneous affine connections in plane domains},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {229--234},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2003},
     mrnumber = {2026160},
     zbl = {1097.53009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a3/}
}
TY  - JOUR
AU  - Kowalski, Oldřich
AU  - Vlášek, Zdeněk
TI  - On the local moduli space of locally homogeneous affine connections in plane domains
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 229
EP  - 234
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a3/
LA  - en
ID  - CMUC_2003__44_2_a3
ER  - 
%0 Journal Article
%A Kowalski, Oldřich
%A Vlášek, Zdeněk
%T On the local moduli space of locally homogeneous affine connections in plane domains
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 229-234
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a3/
%G en
%F CMUC_2003__44_2_a3
Kowalski, Oldřich; Vlášek, Zdeněk. On the local moduli space of locally homogeneous affine connections in plane domains. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 229-234. http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a3/