On the local moduli space of locally homogeneous affine connections in plane domains
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 229-234
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Classification of locally homogeneous affine connections in two dimensions is a nontrivial problem. (See \cite{5} and \cite{7} for two different versions of the solution.) Using a basic formula by B. Opozda, \cite{7}, we prove that all locally homogeneous torsion-less affine connections defined in open domains of a 2-dimensional manifold depend essentially on at most 4 parameters (see Theorem 2.4).
Classification :
53B05, 53C30
Keywords: two-dimensional manifolds with affine connection; locally homogeneous connections
Keywords: two-dimensional manifolds with affine connection; locally homogeneous connections
@article{CMUC_2003__44_2_a3,
author = {Kowalski, Old\v{r}ich and Vl\'a\v{s}ek, Zden\v{e}k},
title = {On the local moduli space of locally homogeneous affine connections in plane domains},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {229--234},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2003},
mrnumber = {2026160},
zbl = {1097.53009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a3/}
}
TY - JOUR AU - Kowalski, Oldřich AU - Vlášek, Zdeněk TI - On the local moduli space of locally homogeneous affine connections in plane domains JO - Commentationes Mathematicae Universitatis Carolinae PY - 2003 SP - 229 EP - 234 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a3/ LA - en ID - CMUC_2003__44_2_a3 ER -
%0 Journal Article %A Kowalski, Oldřich %A Vlášek, Zdeněk %T On the local moduli space of locally homogeneous affine connections in plane domains %J Commentationes Mathematicae Universitatis Carolinae %D 2003 %P 229-234 %V 44 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a3/ %G en %F CMUC_2003__44_2_a3
Kowalski, Oldřich; Vlášek, Zdeněk. On the local moduli space of locally homogeneous affine connections in plane domains. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 229-234. http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a3/