Linear extensions of relations between vector spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 367-385.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ and $Y$ be vector spaces over the same field $K$. Following the terminology of Richard Arens [Pacific J. Math. 11 (1961), 9–23], a relation $F$ of $X$ into $Y$ is called linear if $\lambda F(x)\subset F(\lambda x)$ and $F(x)+F(y)\subset F(x+y)$ for all $\lambda \in K\setminus \{0\}$ and $x,y\in X$. After improving and supplementing some former results on linear relations, we show that a relation $\Phi$ of a linearly independent subset $E$ of $X$ into $Y$ can be extended to a linear relation $F$ of $X$ into $Y$ if and only if there exists a linear subspace $Z$ of $Y$ such that $\Phi (e)\in Y|Z$ for all $e\in E$. Moreover, if $E$ generates $X$, then this extension is unique. Furthermore, we also prove that if $F$ is a linear relation of $X$ into $Y$ and $Z$ is a linear subspace of $X$, then each linear selection relation $\Psi$ of $F|Z$ can be extended to a linear selection relation $\Phi$ of $F$. A particular case of this Hahn-Banach type theorem yields an easy proof of the existence of a linear selection function $f$ of $F$ such that $f\circ F^{ -1}$ is also a function.
Classification : 15A03, 15A04, 26E25, 46A22, 47A06
Keywords: vector spaces; linear and affine subspaces; linear relations
@article{CMUC_2003__44_2_a14,
     author = {Sz\'az, \'Arp\'ad},
     title = {Linear extensions of relations between vector spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {367--385},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2003},
     mrnumber = {2026171},
     zbl = {1104.26305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a14/}
}
TY  - JOUR
AU  - Száz, Árpád
TI  - Linear extensions of relations between vector spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 367
EP  - 385
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a14/
LA  - en
ID  - CMUC_2003__44_2_a14
ER  - 
%0 Journal Article
%A Száz, Árpád
%T Linear extensions of relations between vector spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 367-385
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a14/
%G en
%F CMUC_2003__44_2_a14
Száz, Árpád. Linear extensions of relations between vector spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 367-385. http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a14/