Biharmonic Green domains in a Riemannian manifold
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 359-365.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a Riemannian manifold without a biharmonic Green function defined on it and $\Omega $ a domain in $R$. A necessary and sufficient condition is given for the existence of a biharmonic Green function on $\Omega $.
Classification : 31B30, 31C12
Keywords: biharmonic Green functions
@article{CMUC_2003__44_2_a13,
     author = {Othman, S. I. and Anandam, V.},
     title = {Biharmonic {Green} domains in a {Riemannian} manifold},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {359--365},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2003},
     mrnumber = {2026170},
     zbl = {1127.31301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a13/}
}
TY  - JOUR
AU  - Othman, S. I.
AU  - Anandam, V.
TI  - Biharmonic Green domains in a Riemannian manifold
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 359
EP  - 365
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a13/
LA  - en
ID  - CMUC_2003__44_2_a13
ER  - 
%0 Journal Article
%A Othman, S. I.
%A Anandam, V.
%T Biharmonic Green domains in a Riemannian manifold
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 359-365
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a13/
%G en
%F CMUC_2003__44_2_a13
Othman, S. I.; Anandam, V. Biharmonic Green domains in a Riemannian manifold. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 2, pp. 359-365. http://geodesic.mathdoc.fr/item/CMUC_2003__44_2_a13/