On the composition of the integral and derivative operators of functional order
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 99-120.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The Integral, $I_{\phi}$, and Derivative, $D_{\phi}$, operators of order $\phi$, with $\phi$ a function of positive lower type and upper type less than $1$, were defined in [HV2] in the setting of spaces of homogeneous-type. These definitions generalize those of the fractional integral and derivative operators of order $\alpha$, where $\phi(t)=t^{\alpha}$, given in [GSV]. In this work we show that the composition $T_{\phi}= D_{\phi}\circ I_{\phi}$ is a singular integral operator. This result in addition with the results obtained in [HV2] of boundedness of $I_{\phi}$ and $D_{\phi}$ or the $T1$-theorems proved in [HV1] yield the fact that $T_{\phi}$ is a Calder'on-Zygmund operator bounded on the generalized Besov, $\dot{B}_{p}^{\psi,q}$, $1 \le p,q \infty$, and Triebel-Lizorkin spaces, $\dot{F}_{p}^{\psi,q}$, $1 p, q \infty$, of order $\psi= \psi_1/\psi_2$, where $\psi_1$ and $\psi_2$ are two quasi-increasing functions of adequate upper types $s_1$ and $s_2$, respectively.
Classification : 26A33, 42B20, 46E35, 47B38
Keywords: fractional integral operators; fractional derivative operators; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces
@article{CMUC_2003__44_1_a8,
     author = {Hartzstein, Silvia I. and Viviani, Beatriz E.},
     title = {On the composition of the integral  and derivative operators of functional order},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {99--120},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2003},
     mrnumber = {2045849},
     zbl = {1127.42305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a8/}
}
TY  - JOUR
AU  - Hartzstein, Silvia I.
AU  - Viviani, Beatriz E.
TI  - On the composition of the integral  and derivative operators of functional order
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 99
EP  - 120
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a8/
LA  - en
ID  - CMUC_2003__44_1_a8
ER  - 
%0 Journal Article
%A Hartzstein, Silvia I.
%A Viviani, Beatriz E.
%T On the composition of the integral  and derivative operators of functional order
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 99-120
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a8/
%G en
%F CMUC_2003__44_1_a8
Hartzstein, Silvia I.; Viviani, Beatriz E. On the composition of the integral  and derivative operators of functional order. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 99-120. http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a8/