On the composition of the integral and derivative operators of functional order
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 99-120
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The Integral, $I_{\phi}$, and Derivative, $D_{\phi}$, operators of order $\phi$, with $\phi$ a function of positive lower type and upper type less than $1$, were defined in [HV2] in the setting of spaces of homogeneous-type. These definitions generalize those of the fractional integral and derivative operators of order $\alpha$, where $\phi(t)=t^{\alpha}$, given in [GSV]. In this work we show that the composition $T_{\phi}= D_{\phi}\circ I_{\phi}$ is a singular integral operator. This result in addition with the results obtained in [HV2] of boundedness of $I_{\phi}$ and $D_{\phi}$ or the $T1$-theorems proved in [HV1] yield the fact that $T_{\phi}$ is a Calder'on-Zygmund operator bounded on the generalized Besov, $\dot{B}_{p}^{\psi,q}$, $1 \le p,q \infty$, and Triebel-Lizorkin spaces, $\dot{F}_{p}^{\psi,q}$, $1 p, q \infty$, of order $\psi= \psi_1/\psi_2$, where $\psi_1$ and $\psi_2$ are two quasi-increasing functions of adequate upper types $s_1$ and $s_2$, respectively.
Classification :
26A33, 42B20, 46E35, 47B38
Keywords: fractional integral operators; fractional derivative operators; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces
Keywords: fractional integral operators; fractional derivative operators; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces
@article{CMUC_2003__44_1_a8,
author = {Hartzstein, Silvia I. and Viviani, Beatriz E.},
title = {On the composition of the integral and derivative operators of functional order},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {99--120},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {2003},
mrnumber = {2045849},
zbl = {1127.42305},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a8/}
}
TY - JOUR AU - Hartzstein, Silvia I. AU - Viviani, Beatriz E. TI - On the composition of the integral and derivative operators of functional order JO - Commentationes Mathematicae Universitatis Carolinae PY - 2003 SP - 99 EP - 120 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a8/ LA - en ID - CMUC_2003__44_1_a8 ER -
%0 Journal Article %A Hartzstein, Silvia I. %A Viviani, Beatriz E. %T On the composition of the integral and derivative operators of functional order %J Commentationes Mathematicae Universitatis Carolinae %D 2003 %P 99-120 %V 44 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a8/ %G en %F CMUC_2003__44_1_a8
Hartzstein, Silvia I.; Viviani, Beatriz E. On the composition of the integral and derivative operators of functional order. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 99-120. http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a8/