Decay of solutions of some degenerate hyperbolic equations of Kirchhoff type
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 71-84
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study the asymptotic behavior of solutions to the damped, nonlinear vibration equation with self-interaction $$ \ddot{u}= - \gamma \dot{u} + m(\|\nabla u\|^2) \Delta u - \delta |u|^{\alpha }u + f, $$ which is known as degenerate if $m(\cdot )\ge 0$, and non-degenerate if $m(\cdot )\ge m_0 > 0$. We would like to point out that, to the author's knowledge, exponential decay for this type of equations has been studied just for the special cases of $\alpha $. Our aim is to extend the validity of previous results in [5] to $\alpha \ge 0 $ both to the degenerate and non-degenerate cases of $m$. We extend our results to equations with $ \Delta^2$.
Classification :
35B40, 35L20, 35L70, 35L80, 45K05, 74H45
Keywords: asymptotic behavior of solutions; hyperbolic PDE of degenerate type
Keywords: asymptotic behavior of solutions; hyperbolic PDE of degenerate type
@article{CMUC_2003__44_1_a5,
author = {Szomolay, Barbara},
title = {Decay of solutions of some degenerate hyperbolic equations of {Kirchhoff} type},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {71--84},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {2003},
mrnumber = {2045846},
zbl = {1098.35033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a5/}
}
TY - JOUR AU - Szomolay, Barbara TI - Decay of solutions of some degenerate hyperbolic equations of Kirchhoff type JO - Commentationes Mathematicae Universitatis Carolinae PY - 2003 SP - 71 EP - 84 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a5/ LA - en ID - CMUC_2003__44_1_a5 ER -
Szomolay, Barbara. Decay of solutions of some degenerate hyperbolic equations of Kirchhoff type. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 71-84. http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a5/