$C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}$
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 33-56.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove the Hölder continuity of the homogeneous gradient of the weak solutions $u\in W_{\operatorname{loc}}^{1,p}$ of the p-Laplacian on the Heisenberg group $\Cal H^n$, for $1+\frac{1}{\sqrt{5}} $.
Classification : 35B65, 35D10, 35H20, 35J60, 35J70
Keywords: degenerate elliptic equations; weak solutions; regularity; higher differentiability
@article{CMUC_2003__44_1_a3,
     author = {Marchi, Silvana},
     title = {$C^{1,\alpha}$ local regularity for the solutions of the $p${-Laplacian} on the {Heisenberg} group. {The} case $1+\frac{1}{\sqrt{5}}<p\le2$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {33--56},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2003},
     mrnumber = {2045844},
     zbl = {1098.35055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a3/}
}
TY  - JOUR
AU  - Marchi, Silvana
TI  - $C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 33
EP  - 56
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a3/
LA  - en
ID  - CMUC_2003__44_1_a3
ER  - 
%0 Journal Article
%A Marchi, Silvana
%T $C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 33-56
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a3/
%G en
%F CMUC_2003__44_1_a3
Marchi, Silvana. $C^{1,\alpha}$ local regularity for the solutions of the $p$-Laplacian on the Heisenberg group. The case $1+\frac{1}{\sqrt{5}}