On reflexive subobject lattices and reflexive endomorphism algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 23-32.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the reflexive subobject lattices and reflexive endomorphism algebras in a concrete category. For the category {\bf Set} of sets and mappings, a complete characterization for both reflexive subobject lattices and reflexive endomorphism algebras is obtained. Some partial results are also proved for the category of abelian groups.
Classification : 06A35, 18B05, 18B35, 18D35, 46C10, 47A15, 47C05, 47L35
Keywords: concrete category; optimal subset; reflexive subobject lattice; reflexive endomorphism algebra
@article{CMUC_2003__44_1_a2,
     author = {Zhao, Dongsheng},
     title = {On reflexive subobject lattices and reflexive endomorphism algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2003},
     mrnumber = {2045843},
     zbl = {1101.18303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a2/}
}
TY  - JOUR
AU  - Zhao, Dongsheng
TI  - On reflexive subobject lattices and reflexive endomorphism algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 23
EP  - 32
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a2/
LA  - en
ID  - CMUC_2003__44_1_a2
ER  - 
%0 Journal Article
%A Zhao, Dongsheng
%T On reflexive subobject lattices and reflexive endomorphism algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 23-32
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a2/
%G en
%F CMUC_2003__44_1_a2
Zhao, Dongsheng. On reflexive subobject lattices and reflexive endomorphism algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a2/