Filling boxes densely and disjointly
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 187-196.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We effectively construct in the Hilbert cube $\Bbb H= [0,1]^\omega$ two sets $V, W \subset \Bbb H$ with the following properties: (a) $V \cap W = \emptyset $, (b) $V \cup W$ is discrete-dense, i.e. dense in ${[0,1]_D}^\omega $, where $[0,1]_D$ denotes the unit interval equipped with the discrete topology, (c) $V$, $W$ are open in $\Bbb H$. In fact, $V = \bigcup_{\Bbb N} V_i$, $W = \bigcup_{\Bbb N} W_i$, where $V_i =\bigcup_0^{2^{i-1}-1}V_{ij}$, $W_i =\bigcup_0^{2^{i-1}-1}W_{ij}$. $V_{ij}$, $W_{ij}$ are basic open sets and $(0, 0, 0, \ldots) \in V_{ij}$, $(1, 1, 1, \ldots) \in W_{ij}$, (d) $V_i \cup W_i$, $i \in \Bbb N$ is point symmetric about $(1/2, 1/2, 1/2, \ldots)$. Instead of $[0,1]$ we could have taken any $T_4$-space or a digital interval, where the resolution (number of points) increases with $i$.
Classification : 05-04, 54-04, 54B10
Keywords: Hilbert cube; discrete-dense; disjoint; disconnected; covering; constructive; computation; digital interval; $T_4$-space
@article{CMUC_2003__44_1_a14,
     author = {Schr\"oder, J.},
     title = {Filling boxes densely and disjointly},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {187--196},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2003},
     mrnumber = {2045855},
     zbl = {1099.54011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a14/}
}
TY  - JOUR
AU  - Schröder, J.
TI  - Filling boxes densely and disjointly
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 187
EP  - 196
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a14/
LA  - en
ID  - CMUC_2003__44_1_a14
ER  - 
%0 Journal Article
%A Schröder, J.
%T Filling boxes densely and disjointly
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 187-196
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a14/
%G en
%F CMUC_2003__44_1_a14
Schröder, J. Filling boxes densely and disjointly. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 187-196. http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a14/