Estimation functions and uniformly most powerful tests for inverse Gaussian distribution
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 153-164.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of this article is to develop estimation functions by confidence regions for the inverse Gaussian distribution with two parameters and to construct tests for hypotheses testing concerning the parameter $\lambda $ when the mean parameter $\mu $ is known. The tests constructed are uniformly most powerful tests and for testing the point null hypothesis it is also unbiased.
Classification : 62F03, 62F25
Keywords: inverse Gaussian distribution; estimation functions; uniformly most powerful test; unbiased test
@article{CMUC_2003__44_1_a11,
     author = {Vladimirescu, Ion and Tunaru, Radu},
     title = {Estimation functions and uniformly most powerful tests for inverse {Gaussian} distribution},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {153--164},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2003},
     mrnumber = {2045852},
     zbl = {1127.62314},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a11/}
}
TY  - JOUR
AU  - Vladimirescu, Ion
AU  - Tunaru, Radu
TI  - Estimation functions and uniformly most powerful tests for inverse Gaussian distribution
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 153
EP  - 164
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a11/
LA  - en
ID  - CMUC_2003__44_1_a11
ER  - 
%0 Journal Article
%A Vladimirescu, Ion
%A Tunaru, Radu
%T Estimation functions and uniformly most powerful tests for inverse Gaussian distribution
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 153-164
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a11/
%G en
%F CMUC_2003__44_1_a11
Vladimirescu, Ion; Tunaru, Radu. Estimation functions and uniformly most powerful tests for inverse Gaussian distribution. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 153-164. http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a11/