On the Diophantine equation $\frac{q^n-1}{q-1}=y$
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 1-7
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
There exist many results about the Diophantine equation $(q^n-1)/(q-1)=y^m$, where $m\ge 2$ and $n\geq 3$. In this paper, we suppose that $m=1$, $n$ is an odd integer and $q$ a power of a prime number. Also let $y$ be an integer such that the number of prime divisors of $y-1$ is less than or equal to $3$. Then we solve completely the Diophantine equation $(q^n-1)/(q-1)=y$ for infinitely many values of $y$. This result finds frequent applications in the theory of finite groups.
Classification :
11D41, 11D61
Keywords: higher order Diophantine equation; exponential Diophantine equation
Keywords: higher order Diophantine equation; exponential Diophantine equation
@article{CMUC_2003__44_1_a0,
author = {Khosravi, Amir and Khosravi, Behrooz},
title = {On the {Diophantine} equation $\frac{q^n-1}{q-1}=y$},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {1--7},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {2003},
mrnumber = {2045841},
zbl = {1097.11015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a0/}
}
TY - JOUR
AU - Khosravi, Amir
AU - Khosravi, Behrooz
TI - On the Diophantine equation $\frac{q^n-1}{q-1}=y$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2003
SP - 1
EP - 7
VL - 44
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a0/
LA - en
ID - CMUC_2003__44_1_a0
ER -
Khosravi, Amir; Khosravi, Behrooz. On the Diophantine equation $\frac{q^n-1}{q-1}=y$. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a0/