On the Diophantine equation $\frac{q^n-1}{q-1}=y$
Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 1-7.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

There exist many results about the Diophantine equation $(q^n-1)/(q-1)=y^m$, where $m\ge 2$ and $n\geq 3$. In this paper, we suppose that $m=1$, $n$ is an odd integer and $q$ a power of a prime number. Also let $y$ be an integer such that the number of prime divisors of $y-1$ is less than or equal to $3$. Then we solve completely the Diophantine equation $(q^n-1)/(q-1)=y$ for infinitely many values of $y$. This result finds frequent applications in the theory of finite groups.
Classification : 11D41, 11D61
Keywords: higher order Diophantine equation; exponential Diophantine equation
@article{CMUC_2003__44_1_a0,
     author = {Khosravi, Amir and Khosravi, Behrooz},
     title = {On the {Diophantine} equation $\frac{q^n-1}{q-1}=y$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2003},
     mrnumber = {2045841},
     zbl = {1097.11015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a0/}
}
TY  - JOUR
AU  - Khosravi, Amir
AU  - Khosravi, Behrooz
TI  - On the Diophantine equation $\frac{q^n-1}{q-1}=y$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2003
SP  - 1
EP  - 7
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a0/
LA  - en
ID  - CMUC_2003__44_1_a0
ER  - 
%0 Journal Article
%A Khosravi, Amir
%A Khosravi, Behrooz
%T On the Diophantine equation $\frac{q^n-1}{q-1}=y$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2003
%P 1-7
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a0/
%G en
%F CMUC_2003__44_1_a0
Khosravi, Amir; Khosravi, Behrooz. On the Diophantine equation $\frac{q^n-1}{q-1}=y$. Commentationes Mathematicae Universitatis Carolinae, Tome 44 (2003) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/CMUC_2003__44_1_a0/