Spaces of continuous functions, box products and almost-$\omega$-resolvable spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 687-705.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A dense-in-itself space $X$ is called {\it $C_\square$-discrete} if the space of real continuous functions on $X$ with its box topology, $C_\square(X)$, is a discrete space. A space $X$ is called {\it almost-$\omega$-resolvable} provided that $X$ is the union of a countable increasing family of subsets each of them with an empty interior. We analyze these classes of spaces by determining their relations with $\kappa$-resolvable and almost resolvable spaces. We prove that every almost-$\omega$-resolvable space is $C_\square$-discrete, and that these classes coincide in the realm of completely regular spaces. Also, we prove that almost resolvable spaces and almost-$\omega$-resolvable spaces are two different classes of spaces if there exists a measurable cardinal. Finally, we prove that it is consistent with $ZFC$ that every dense-in-itself space is almost-$\omega$-resolvable, and that the existence of a measurable cardinal is equiconsistent with the existence of a Tychonoff space without isolated points which is not almost-$\omega$-resolvable.
Classification : 54A35, 54B10, 54C35, 54F65
Keywords: box product; $\kappa$-resolvable space; almost resolvable space; almost-$\omega$-resolvable space; Baire irresolvable space; measurable cardinals
@article{CMUC_2002__43_4_a8,
     author = {Tamariz-Mascar\'ua, A. and Villegas-Rodr{\'\i}guez, H.},
     title = {Spaces of continuous functions, box products and almost-$\omega$-resolvable spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {687--705},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2002},
     mrnumber = {2045790},
     zbl = {1090.54011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a8/}
}
TY  - JOUR
AU  - Tamariz-Mascarúa, A.
AU  - Villegas-Rodríguez, H.
TI  - Spaces of continuous functions, box products and almost-$\omega$-resolvable spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 687
EP  - 705
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a8/
LA  - en
ID  - CMUC_2002__43_4_a8
ER  - 
%0 Journal Article
%A Tamariz-Mascarúa, A.
%A Villegas-Rodríguez, H.
%T Spaces of continuous functions, box products and almost-$\omega$-resolvable spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 687-705
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a8/
%G en
%F CMUC_2002__43_4_a8
Tamariz-Mascarúa, A.; Villegas-Rodríguez, H. Spaces of continuous functions, box products and almost-$\omega$-resolvable spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 687-705. http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a8/