On self-homeomorphic dendrites
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 665-673
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is shown that for every numbers $m_1, m_2 \in \{3, \dots, \omega\}$ there is a strongly self-homeomorphic dendrite which is not pointwise self-homeomorphic. The set of all points at which the dendrite is pointwise self-homeomorphic is characterized. A general method of constructing a large family of dendrites with the same property is presented.
@article{CMUC_2002__43_4_a6,
author = {Charatonik, Janusz J. and Krupski, Pawe{\l}},
title = {On self-homeomorphic dendrites},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {665--673},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2002},
mrnumber = {2045788},
zbl = {1090.54030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a6/}
}
Charatonik, Janusz J.; Krupski, Paweł. On self-homeomorphic dendrites. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 665-673. http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a6/