Addition theorems and $D$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 653-663.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved that if a regular space $X$ is the union of a finite family of metrizable subspaces then $X$ is a $D$-space in the sense of E. van Douwen. It follows that if a regular space $X$ of countable extent is the union of a finite collection of metrizable subspaces then $X$ is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a $D$-space. Some other new results on the properties of spaces which are unions of a finite collection of nice subspaces are obtained.
Classification : 54D20, 54E35, 54F99
Keywords: $D$-space; point-countable base; extent; metrizable space; Lindelöf space
@article{CMUC_2002__43_4_a5,
     author = {Arhangel'skii, A. V. and Buzyakova, R. Z.},
     title = {Addition theorems and $D$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {653--663},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2002},
     mrnumber = {2045787},
     zbl = {1090.54017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a5/}
}
TY  - JOUR
AU  - Arhangel'skii, A. V.
AU  - Buzyakova, R. Z.
TI  - Addition theorems and $D$-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 653
EP  - 663
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a5/
LA  - en
ID  - CMUC_2002__43_4_a5
ER  - 
%0 Journal Article
%A Arhangel'skii, A. V.
%A Buzyakova, R. Z.
%T Addition theorems and $D$-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 653-663
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a5/
%G en
%F CMUC_2002__43_4_a5
Arhangel'skii, A. V.; Buzyakova, R. Z. Addition theorems and $D$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 653-663. http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a5/