Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 641-652
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We obtain some new properties of the class of KC-spaces, that is, those topological spaces in which compact sets are closed. The results are used to generalize theorems of Anderson [1] and Steiner and Steiner [12] concerning complementation in the lattice of $T_1$-topologies on a set $X$.
Classification :
54A10, 54D10, 54D25, 54D55
Keywords: KC-space; $T_1$-complementary topology; $T_1$-independent; sequential space
Keywords: KC-space; $T_1$-complementary topology; $T_1$-independent; sequential space
@article{CMUC_2002__43_4_a4,
author = {Alas, Ofelia T. and Wilson, Richard G.},
title = {Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {641--652},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2002},
mrnumber = {2045786},
zbl = {1090.54015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a4/}
}
TY - JOUR AU - Alas, Ofelia T. AU - Wilson, Richard G. TI - Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 641 EP - 652 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a4/ LA - en ID - CMUC_2002__43_4_a4 ER -
%0 Journal Article %A Alas, Ofelia T. %A Wilson, Richard G. %T Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set %J Commentationes Mathematicae Universitatis Carolinae %D 2002 %P 641-652 %V 43 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a4/ %G en %F CMUC_2002__43_4_a4
Alas, Ofelia T.; Wilson, Richard G. Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 641-652. http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a4/