Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 641-652.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We obtain some new properties of the class of KC-spaces, that is, those topological spaces in which compact sets are closed. The results are used to generalize theorems of Anderson [1] and Steiner and Steiner [12] concerning complementation in the lattice of $T_1$-topologies on a set $X$.
Classification : 54A10, 54D10, 54D25, 54D55
Keywords: KC-space; $T_1$-complementary topology; $T_1$-independent; sequential space
@article{CMUC_2002__43_4_a4,
     author = {Alas, Ofelia T. and Wilson, Richard G.},
     title = {Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {641--652},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2002},
     mrnumber = {2045786},
     zbl = {1090.54015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a4/}
}
TY  - JOUR
AU  - Alas, Ofelia T.
AU  - Wilson, Richard G.
TI  - Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 641
EP  - 652
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a4/
LA  - en
ID  - CMUC_2002__43_4_a4
ER  - 
%0 Journal Article
%A Alas, Ofelia T.
%A Wilson, Richard G.
%T Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 641-652
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a4/
%G en
%F CMUC_2002__43_4_a4
Alas, Ofelia T.; Wilson, Richard G. Spaces in which compact subsets are closed and the lattice of $T_1$-topologies on a set. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 641-652. http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a4/