Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 723-754
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the setting of spaces of homogeneous-type, we define the Integral, $I_{\phi}$, and Derivative, $D_{\phi}$, operators of order $\phi$, where $\phi$ is a function of positive lower type and upper type less than $1$, and show that $I_{\phi}$ and $D_{\phi}$ are bounded from Lipschitz spaces $\Lambda^{\xi}$ to $\Lambda^{\xi \phi}$ and $\Lambda^{\xi/\phi}$ respectively, with suitable restrictions on the quasi-increasing function $\xi$ in each case. We also prove that $I_{\phi}$ and $D_{\phi}$ are bounded from the generalized Besov $\dot{B}_{p}^{\psi, q}$, with $1 \leq p, q \infty $, and Triebel-Lizorkin spaces $\dot{F}_{p}^{\psi, q}$, with $1 p, q \infty $, of order $\psi$ to those of order $\phi \psi$ and $\psi/\phi$ respectively, where $\psi$ is the quotient of two quasi-increasing functions of adequate upper types.
Classification :
26A33, 42B35, 46E35, 47G10
Keywords: integral and derivative operators of functional order; fractional integral operator; fractional derivative operator; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces
Keywords: integral and derivative operators of functional order; fractional integral operator; fractional derivative operator; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces
@article{CMUC_2002__43_4_a10,
author = {Hartzstein, Silvia I. and Viviani, Beatriz E.},
title = {Integral and derivative operators of functional order on generalized {Besov} and {Triebel-Lizorkin} spaces in the setting of spaces of homogeneous type},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {723--754},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2002},
mrnumber = {2046192},
zbl = {1091.26002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a10/}
}
TY - JOUR AU - Hartzstein, Silvia I. AU - Viviani, Beatriz E. TI - Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 723 EP - 754 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a10/ LA - en ID - CMUC_2002__43_4_a10 ER -
%0 Journal Article %A Hartzstein, Silvia I. %A Viviani, Beatriz E. %T Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type %J Commentationes Mathematicae Universitatis Carolinae %D 2002 %P 723-754 %V 43 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a10/ %G en %F CMUC_2002__43_4_a10
Hartzstein, Silvia I.; Viviani, Beatriz E. Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 723-754. http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a10/