Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 723-754.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the setting of spaces of homogeneous-type, we define the Integral, $I_{\phi}$, and Derivative, $D_{\phi}$, operators of order $\phi$, where $\phi$ is a function of positive lower type and upper type less than $1$, and show that $I_{\phi}$ and $D_{\phi}$ are bounded from Lipschitz spaces $\Lambda^{\xi}$ to $\Lambda^{\xi \phi}$ and $\Lambda^{\xi/\phi}$ respectively, with suitable restrictions on the quasi-increasing function $\xi$ in each case. We also prove that $I_{\phi}$ and $D_{\phi}$ are bounded from the generalized Besov $\dot{B}_{p}^{\psi, q}$, with $1 \leq p, q \infty $, and Triebel-Lizorkin spaces $\dot{F}_{p}^{\psi, q}$, with $1 p, q \infty $, of order $\psi$ to those of order $\phi \psi$ and $\psi/\phi$ respectively, where $\psi$ is the quotient of two quasi-increasing functions of adequate upper types.
Classification : 26A33, 42B35, 46E35, 47G10
Keywords: integral and derivative operators of functional order; fractional integral operator; fractional derivative operator; spaces of homogeneous type; Besov spaces; Triebel-Lizorkin spaces
@article{CMUC_2002__43_4_a10,
     author = {Hartzstein, Silvia I. and Viviani, Beatriz E.},
     title = {Integral and derivative operators of functional order on generalized {Besov} and {Triebel-Lizorkin} spaces in the setting of spaces of homogeneous type},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {723--754},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2002},
     mrnumber = {2046192},
     zbl = {1091.26002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a10/}
}
TY  - JOUR
AU  - Hartzstein, Silvia I.
AU  - Viviani, Beatriz E.
TI  - Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 723
EP  - 754
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a10/
LA  - en
ID  - CMUC_2002__43_4_a10
ER  - 
%0 Journal Article
%A Hartzstein, Silvia I.
%A Viviani, Beatriz E.
%T Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 723-754
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a10/
%G en
%F CMUC_2002__43_4_a10
Hartzstein, Silvia I.; Viviani, Beatriz E. Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 4, pp. 723-754. http://geodesic.mathdoc.fr/item/CMUC_2002__43_4_a10/