Covering $^\omega\omega$ by special Cantor sets
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 497-509
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space $^\omega \omega $ of irrationals, or certain of its subspaces. In particular, given $f\in {}^\omega (\omega \setminus \{0\})$, we consider compact sets of the form $\prod_{i\in \omega }B_i$, where $|B_i|= f(i)$ for all, or for infinitely many, $i$. We also consider ``$n$-splitting'' compact sets, i.e., compact sets $K$ such that for any $f\in K$ and $i\in \omega $, $|\{g(i):g\in K, g\restriction i=f\restriction i\}|= n$.
Classification :
03E17, 03E35, 54A35
Keywords: irrationals; $f$-cone; weak $f$-cone; $n$-splitting compact set
Keywords: irrationals; $f$-cone; weak $f$-cone; $n$-splitting compact set
@article{CMUC_2002__43_3_a9,
author = {Gruenhage, Gary and Levy, Ronnie},
title = {Covering $^\omega\omega$ by special {Cantor} sets},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {497--509},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {2002},
mrnumber = {1920525},
zbl = {1072.03028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a9/}
}
TY - JOUR AU - Gruenhage, Gary AU - Levy, Ronnie TI - Covering $^\omega\omega$ by special Cantor sets JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 497 EP - 509 VL - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a9/ LA - en ID - CMUC_2002__43_3_a9 ER -
Gruenhage, Gary; Levy, Ronnie. Covering $^\omega\omega$ by special Cantor sets. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 497-509. http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a9/