Covering $^\omega\omega$ by special Cantor sets
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 497-509.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space $^\omega \omega $ of irrationals, or certain of its subspaces. In particular, given $f\in {}^\omega (\omega \setminus \{0\})$, we consider compact sets of the form $\prod_{i\in \omega }B_i$, where $|B_i|= f(i)$ for all, or for infinitely many, $i$. We also consider ``$n$-splitting'' compact sets, i.e., compact sets $K$ such that for any $f\in K$ and $i\in \omega $, $|\{g(i):g\in K, g\restriction i=f\restriction i\}|= n$.
Classification : 03E17, 03E35, 54A35
Keywords: irrationals; $f$-cone; weak $f$-cone; $n$-splitting compact set
@article{CMUC_2002__43_3_a9,
     author = {Gruenhage, Gary and Levy, Ronnie},
     title = {Covering $^\omega\omega$ by special {Cantor} sets},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {497--509},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2002},
     mrnumber = {1920525},
     zbl = {1072.03028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a9/}
}
TY  - JOUR
AU  - Gruenhage, Gary
AU  - Levy, Ronnie
TI  - Covering $^\omega\omega$ by special Cantor sets
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 497
EP  - 509
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a9/
LA  - en
ID  - CMUC_2002__43_3_a9
ER  - 
%0 Journal Article
%A Gruenhage, Gary
%A Levy, Ronnie
%T Covering $^\omega\omega$ by special Cantor sets
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 497-509
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a9/
%G en
%F CMUC_2002__43_3_a9
Gruenhage, Gary; Levy, Ronnie. Covering $^\omega\omega$ by special Cantor sets. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 497-509. http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a9/