Holomorphic subordinated semigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 457-466
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
If $(e^{-tA})_{t>0}$ is a strongly continuous and contractive semigroup on a complex Banach space $B$, then $-(-A)^\alpha $, $0\alpha 1$, generates a holomorphic semigroup on $B$. This was proved by K. Yosida in [7]. Using similar techniques, we present a class $H$ of Bernstein functions such that for all $f\in H$, the operator $-f(-A)$ generates a holomorphic semigroup.
Classification :
35B40, 35B65, 35K65, 47A60, 47D06
Keywords: holomorphic semigroup; Bernstein function
Keywords: holomorphic semigroup; Bernstein function
@article{CMUC_2002__43_3_a4,
author = {Saddi, Adel},
title = {Holomorphic subordinated semigroups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {457--466},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {2002},
mrnumber = {1920520},
zbl = {1090.35109},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a4/}
}
Saddi, Adel. Holomorphic subordinated semigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 457-466. http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a4/