Holomorphic subordinated semigroups
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 457-466.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $(e^{-tA})_{t>0}$ is a strongly continuous and contractive semigroup on a complex Banach space $B$, then $-(-A)^\alpha $, $0\alpha 1$, generates a holomorphic semigroup on $B$. This was proved by K. Yosida in [7]. Using similar techniques, we present a class $H$ of Bernstein functions such that for all $f\in H$, the operator $-f(-A)$ generates a holomorphic semigroup.
Classification : 35B40, 35B65, 35K65, 47A60, 47D06
Keywords: holomorphic semigroup; Bernstein function
@article{CMUC_2002__43_3_a4,
     author = {Saddi, Adel},
     title = {Holomorphic subordinated semigroups},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {457--466},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2002},
     mrnumber = {1920520},
     zbl = {1090.35109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a4/}
}
TY  - JOUR
AU  - Saddi, Adel
TI  - Holomorphic subordinated semigroups
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 457
EP  - 466
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a4/
LA  - en
ID  - CMUC_2002__43_3_a4
ER  - 
%0 Journal Article
%A Saddi, Adel
%T Holomorphic subordinated semigroups
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 457-466
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a4/
%G en
%F CMUC_2002__43_3_a4
Saddi, Adel. Holomorphic subordinated semigroups. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 457-466. http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a4/