Commutative modular group algebras of $p$-mixed and $p$-splitting abelian $\Sigma$-groups
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 419-428
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a $p$-mixed abelian group and $R$ is a commutative perfect integral domain of $\operatorname{char} R = p > 0$. Then, the first main result is that the group of all normalized invertible elements $V(RG)$ is a $\Sigma $-group if and only if $G$ is a $\Sigma $-group. In particular, the second central result is that if $G$ is a $\Sigma $-group, the $R$-algebras isomorphism $RA\cong RG$ between the group algebras $RA$ and $RG$ for an arbitrary but fixed group $A$ implies $A$ is a $p$-mixed abelian $\Sigma $-group and even more that the high subgroups of $A$ and $G$ are isomorphic, namely, ${\Cal H}_A \cong {\Cal H}_G$. Besides, when $G$ is $p$-splitting and $R$ is an algebraically closed field of $\operatorname{char} R = p \not= 0$, $V(RG)$ is a $\Sigma $-group if and only if $G_p$ and $G/G_t$ are both $\Sigma $-groups. These statements combined with our recent results published in Math. J. Okayama Univ. (1998) almost exhausted the investigations on this theme concerning the description of the group structure.
Classification :
16S34, 16U60, 20C07, 20K10, 20K20, 20K21
Keywords: group algebras; high subgroups; $p$-mixed and $p$-splitting groups; $\Sigma $-groups
Keywords: group algebras; high subgroups; $p$-mixed and $p$-splitting groups; $\Sigma $-groups
@article{CMUC_2002__43_3_a2,
author = {Danchev, Peter},
title = {Commutative modular group algebras of $p$-mixed and $p$-splitting abelian $\Sigma$-groups},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {419--428},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {2002},
mrnumber = {1920518},
zbl = {1068.16042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a2/}
}
TY - JOUR AU - Danchev, Peter TI - Commutative modular group algebras of $p$-mixed and $p$-splitting abelian $\Sigma$-groups JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 419 EP - 428 VL - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a2/ LA - en ID - CMUC_2002__43_3_a2 ER -
%0 Journal Article %A Danchev, Peter %T Commutative modular group algebras of $p$-mixed and $p$-splitting abelian $\Sigma$-groups %J Commentationes Mathematicae Universitatis Carolinae %D 2002 %P 419-428 %V 43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a2/ %G en %F CMUC_2002__43_3_a2
Danchev, Peter. Commutative modular group algebras of $p$-mixed and $p$-splitting abelian $\Sigma$-groups. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 419-428. http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a2/