Characterization of $\omega$-limit sets of continuous maps of the circle
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 575-581
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we extend results of Blokh, Bruckner, Humke and Sm'{\i}tal [Trans. Amer. Math. Soc. {\bf 348} (1996), 1357--1372] about characterization of $\omega$-limit sets from the class $\Cal{C}(I,I)$ of continuous maps of the interval to the class $\Cal C(\Bbb S,\Bbb S)$ of continuous maps of the circle. Among others we give geometric characterization of $\omega$-limit sets and then we prove that the family of $\omega$-limit sets is closed with respect to the Hausdorff metric.
Classification :
26A18, 37B99, 37E10
Keywords: dynamical system; circle map; $\omega$-limit set
Keywords: dynamical system; circle map; $\omega$-limit set
@article{CMUC_2002__43_3_a17,
author = {Pokluda, David},
title = {Characterization of $\omega$-limit sets of continuous maps of the circle},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {575--581},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {2002},
mrnumber = {1920533},
zbl = {1090.37027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a17/}
}
TY - JOUR AU - Pokluda, David TI - Characterization of $\omega$-limit sets of continuous maps of the circle JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 575 EP - 581 VL - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a17/ LA - en ID - CMUC_2002__43_3_a17 ER -
Pokluda, David. Characterization of $\omega$-limit sets of continuous maps of the circle. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 575-581. http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a17/