Characterization of $\omega$-limit sets of continuous maps of the circle
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 575-581.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we extend results of Blokh, Bruckner, Humke and Sm'{\i}tal [Trans. Amer. Math. Soc. {\bf 348} (1996), 1357--1372] about characterization of $\omega$-limit sets from the class $\Cal{C}(I,I)$ of continuous maps of the interval to the class $\Cal C(\Bbb S,\Bbb S)$ of continuous maps of the circle. Among others we give geometric characterization of $\omega$-limit sets and then we prove that the family of $\omega$-limit sets is closed with respect to the Hausdorff metric.
Classification : 26A18, 37B99, 37E10
Keywords: dynamical system; circle map; $\omega$-limit set
@article{CMUC_2002__43_3_a17,
     author = {Pokluda, David},
     title = {Characterization of $\omega$-limit sets of continuous maps of the circle},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {575--581},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2002},
     mrnumber = {1920533},
     zbl = {1090.37027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a17/}
}
TY  - JOUR
AU  - Pokluda, David
TI  - Characterization of $\omega$-limit sets of continuous maps of the circle
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 575
EP  - 581
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a17/
LA  - en
ID  - CMUC_2002__43_3_a17
ER  - 
%0 Journal Article
%A Pokluda, David
%T Characterization of $\omega$-limit sets of continuous maps of the circle
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 575-581
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a17/
%G en
%F CMUC_2002__43_3_a17
Pokluda, David. Characterization of $\omega$-limit sets of continuous maps of the circle. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 575-581. http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a17/