Liftings of vector fields to $1$-forms on the $r$-jet prolongation of the cotangent bundle
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 565-573.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For natural numbers $r$ and $n\geq 2$ all natural operators $T_{\vert \Cal M f_n}\rightsquigarrow T^* (J^rT^{*})$ transforming vector fields from $n$-manifolds $M$ into $1$-forms on $J^r T^{*}M=\{j^r_x (\omega)\mid \omega \in \Omega^1(M), x\in M\}$ are classified. A similar problem with fibered manifolds instead of manifolds is discussed.
Classification : 58A20, 58A32
Keywords: natural bundle; natural operator
@article{CMUC_2002__43_3_a16,
     author = {Mikulski, W. M.},
     title = {Liftings of vector fields to $1$-forms on the $r$-jet prolongation of the cotangent bundle},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {565--573},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2002},
     mrnumber = {1920532},
     zbl = {1090.58005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a16/}
}
TY  - JOUR
AU  - Mikulski, W. M.
TI  - Liftings of vector fields to $1$-forms on the $r$-jet prolongation of the cotangent bundle
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 565
EP  - 573
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a16/
LA  - en
ID  - CMUC_2002__43_3_a16
ER  - 
%0 Journal Article
%A Mikulski, W. M.
%T Liftings of vector fields to $1$-forms on the $r$-jet prolongation of the cotangent bundle
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 565-573
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a16/
%G en
%F CMUC_2002__43_3_a16
Mikulski, W. M. Liftings of vector fields to $1$-forms on the $r$-jet prolongation of the cotangent bundle. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 565-573. http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a16/