Implicit Markov kernels in probability theory
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 547-564.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Having Polish spaces $\Bbb X$, $\Bbb Y$ and $\Bbb Z$ we shall discuss the existence of an $\Bbb X \times \Bbb Y$-valued random vector $(\xi,\eta )$ such that its conditional distributions $\operatorname{K}_{x} = \Cal L(\eta\mid \xi=x)$ satisfy $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ for some maps $e:\Bbb X\times \Cal M_1(\Bbb Y) \to \Bbb Z$, $c:\Bbb X \to \Bbb Z$ or multifunction $C:\Bbb X \to 2^{\Bbb Z}$ respectively. The problem is equivalent to the existence of universally measurable Markov kernel $\operatorname{K}:\Bbb X \to \Cal M_1(\Bbb Y)$ defined implicitly by $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ respectively. In the paper we shall provide sufficient conditions for the existence of the desired Markov kernel. We shall discuss some special solutions of the $(e,c)$- or $(e,C)$-problem and illustrate the theory on the generalized moment problem.
Classification : 28A35, 28B20, 46A55, 60A10, 60B05
Keywords: Markov kernels; universal measurability; selections; moment problems; extreme points
@article{CMUC_2002__43_3_a15,
     author = {Hlubinka, Daniel},
     title = {Implicit {Markov} kernels in probability theory},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {547--564},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2002},
     mrnumber = {1920531},
     zbl = {1091.28003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a15/}
}
TY  - JOUR
AU  - Hlubinka, Daniel
TI  - Implicit Markov kernels in probability theory
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 547
EP  - 564
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a15/
LA  - en
ID  - CMUC_2002__43_3_a15
ER  - 
%0 Journal Article
%A Hlubinka, Daniel
%T Implicit Markov kernels in probability theory
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 547-564
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a15/
%G en
%F CMUC_2002__43_3_a15
Hlubinka, Daniel. Implicit Markov kernels in probability theory. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 3, pp. 547-564. http://geodesic.mathdoc.fr/item/CMUC_2002__43_3_a15/