Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 319-333.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for $T_1$-spaces iff $\text{\bf CC}(\Bbb R)$, the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf $T_1$-spaces are finitely productive iff $\text{\bf CC}(\Bbb R)$ fails. 3. Lindelöf $T_2$-spaces are productive iff $\text{\bf CC}(\Bbb R)$ fails and $\text{\bf BPI}$, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact $T_1$-spaces are Lindelöf iff $\text{\bf AC}$ holds. 5. Lindelöf spaces are countably summable iff $\text{\bf CC}$, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either $\text{\bf CC}$ holds or $\text{\bf CC}(\Bbb R)$ fails. 7. Lindelöf $T_2$-spaces are $T_3$ spaces iff $\text{\bf CC}(\Bbb R)$ fails. 8. Totally disconnected Lindelöf $T_2$-spaces are zerodimensional iff $\text{\bf CC}(\Bbb R)$ fails.
Classification : 03E25, 54A35, 54B10, 54D20, 54D30
Keywords: axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum
@article{CMUC_2002__43_2_a9,
     author = {Herrlich, Horst},
     title = {Products of {Lindel\"of} $T_2$-spaces are {Lindel\"of} {\textendash} in some models of {ZF}},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {319--333},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2002},
     mrnumber = {1922130},
     zbl = {1072.03029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a9/}
}
TY  - JOUR
AU  - Herrlich, Horst
TI  - Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 319
EP  - 333
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a9/
LA  - en
ID  - CMUC_2002__43_2_a9
ER  - 
%0 Journal Article
%A Herrlich, Horst
%T Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 319-333
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a9/
%G en
%F CMUC_2002__43_2_a9
Herrlich, Horst. Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 319-333. http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a9/