On the intrinsic geometry of a unit vector field
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 299-317
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature $K$, we give a description of the totally geodesic unit vector fields for $K=0$ and $K=1$ and prove a non-existence result for $K\ne 0,1$. We also found a family $\xi_\omega$ of vector fields on the hyperbolic 2-plane $L^2$ of curvature $-c^2$ which generate foliations on $T_1L^2$ with leaves of constant intrinsic curvature $-c^2$ and of constant extrinsic curvature $-\frac{c^2}{4}$.
Classification :
14E20, 20C20, 46E25, 54C40
Keywords: Sasaki metric; vector field; sectional curvature; totally geodesic submanifolds
Keywords: Sasaki metric; vector field; sectional curvature; totally geodesic submanifolds
@article{CMUC_2002__43_2_a8,
author = {Yampolsky, A.},
title = {On the intrinsic geometry of a unit vector field},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {299--317},
publisher = {mathdoc},
volume = {43},
number = {2},
year = {2002},
mrnumber = {1922129},
zbl = {1090.54013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a8/}
}
Yampolsky, A. On the intrinsic geometry of a unit vector field. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 299-317. http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a8/