On the intrinsic geometry of a unit vector field
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 299-317.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature $K$, we give a description of the totally geodesic unit vector fields for $K=0$ and $K=1$ and prove a non-existence result for $K\ne 0,1$. We also found a family $\xi_\omega$ of vector fields on the hyperbolic 2-plane $L^2$ of curvature $-c^2$ which generate foliations on $T_1L^2$ with leaves of constant intrinsic curvature $-c^2$ and of constant extrinsic curvature $-\frac{c^2}{4}$.
Classification : 14E20, 20C20, 46E25, 54C40
Keywords: Sasaki metric; vector field; sectional curvature; totally geodesic submanifolds
@article{CMUC_2002__43_2_a8,
     author = {Yampolsky, A.},
     title = {On the intrinsic geometry of a unit vector field},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {299--317},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2002},
     mrnumber = {1922129},
     zbl = {1090.54013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a8/}
}
TY  - JOUR
AU  - Yampolsky, A.
TI  - On the intrinsic geometry of a unit vector field
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 299
EP  - 317
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a8/
LA  - en
ID  - CMUC_2002__43_2_a8
ER  - 
%0 Journal Article
%A Yampolsky, A.
%T On the intrinsic geometry of a unit vector field
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 299-317
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a8/
%G en
%F CMUC_2002__43_2_a8
Yampolsky, A. On the intrinsic geometry of a unit vector field. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 299-317. http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a8/