Curvature homogeneous spaces whose curvature tensors have large symmetries
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 283-297
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of ``large" Lie subalgebras $\frak{h}$ of $\frak{so}(n)$. In this paper we deal with the cases of $\frak{h}=\frak{so}(r) \oplus \frak{so}(n-r)$ $(2\leq r \leq n-r)$, $\frak{so}(n-2)$, and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces.
Classification :
53B20, 53C30
Keywords: locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations
Keywords: locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations
@article{CMUC_2002__43_2_a7,
author = {Tsukada, Kazumi},
title = {Curvature homogeneous spaces whose curvature tensors have large symmetries},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {283--297},
publisher = {mathdoc},
volume = {43},
number = {2},
year = {2002},
mrnumber = {1922128},
zbl = {1090.53050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a7/}
}
TY - JOUR AU - Tsukada, Kazumi TI - Curvature homogeneous spaces whose curvature tensors have large symmetries JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 283 EP - 297 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a7/ LA - en ID - CMUC_2002__43_2_a7 ER -
Tsukada, Kazumi. Curvature homogeneous spaces whose curvature tensors have large symmetries. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 283-297. http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a7/