Curvature homogeneous spaces whose curvature tensors have large symmetries
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 283-297.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of ``large" Lie subalgebras $\frak{h}$ of $\frak{so}(n)$. In this paper we deal with the cases of $\frak{h}=\frak{so}(r) \oplus \frak{so}(n-r)$ $(2\leq r \leq n-r)$, $\frak{so}(n-2)$, and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces.
Classification : 53B20, 53C30
Keywords: locally homogeneous spaces; curvature homogeneous spaces; totally geodesic foliations
@article{CMUC_2002__43_2_a7,
     author = {Tsukada, Kazumi},
     title = {Curvature homogeneous spaces whose curvature tensors have large symmetries},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {283--297},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2002},
     mrnumber = {1922128},
     zbl = {1090.53050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a7/}
}
TY  - JOUR
AU  - Tsukada, Kazumi
TI  - Curvature homogeneous spaces whose curvature tensors have large symmetries
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 283
EP  - 297
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a7/
LA  - en
ID  - CMUC_2002__43_2_a7
ER  - 
%0 Journal Article
%A Tsukada, Kazumi
%T Curvature homogeneous spaces whose curvature tensors have large symmetries
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 283-297
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a7/
%G en
%F CMUC_2002__43_2_a7
Tsukada, Kazumi. Curvature homogeneous spaces whose curvature tensors have large symmetries. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 283-297. http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a7/