Homogeneous geodesics in a three-dimensional Lie group
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 261-270.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

O. Kowalski and J. Szenthe [KS] proved that every homogeneous Riemannian manifold admits at least one homogeneous geodesic, i.e\. one geodesic which is an orbit of a one-parameter group of isometries. In [KNV] the related two problems were studied and a negative answer was given to both ones: (1) Let $M=K/H$ be a homogeneous Riemannian manifold where $K$ is the largest connected group of isometries and $\dim M\geq 3$. Does $M$ always admit more than one homogeneous geodesic? (2) Suppose that $M=K/H$ admits $m = \dim M$ linearly independent homogeneous geodesics through the origin $o$. Does it admit $m$ mutually orthogonal homogeneous geodesics? In this paper the author continues this study in a three-dimensional connected Lie group $G$ equipped with a left invariant Riemannian metric and investigates the set of all homogeneous geodesics.
Classification : 53C20, 53C22, 53C30
Keywords: Riemannian manifold; homogeneous space; geodesics as orbits
@article{CMUC_2002__43_2_a5,
     author = {Marinosci, Rosa Anna},
     title = {Homogeneous geodesics in a three-dimensional {Lie} group},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {261--270},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2002},
     mrnumber = {1922126},
     zbl = {1090.53038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a5/}
}
TY  - JOUR
AU  - Marinosci, Rosa Anna
TI  - Homogeneous geodesics in a three-dimensional Lie group
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 261
EP  - 270
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a5/
LA  - en
ID  - CMUC_2002__43_2_a5
ER  - 
%0 Journal Article
%A Marinosci, Rosa Anna
%T Homogeneous geodesics in a three-dimensional Lie group
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 261-270
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a5/
%G en
%F CMUC_2002__43_2_a5
Marinosci, Rosa Anna. Homogeneous geodesics in a three-dimensional Lie group. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 261-270. http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a5/