Quasiharmonic fields and Beltrami operators
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 363-377.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A quasiharmonic field is a pair $\Cal{F} = [B,E]$ of vector fields satisfying $\operatorname{div} B=0$, $\operatorname{curl} E=0$, and coupled by a distorsion inequality. For a given $\Cal F$, we construct a matrix field $\Cal A=\Cal A[B,E]$ such that ${\Cal A} E=B$. This remark in particular shows that the theory of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs. Here we stress some properties of our operator $\Cal A[B,E]$ and find their applications to the study of regularity of solutions to elliptic PDEs, and to some questions of G-convergence.
Classification : 30C65, 35B40, 35B45, 35D10, 35J20, 35J60, 47B99, 47F05
Keywords: quasiharmonic fields; Beltrami operator; elliptic partial differential equations; G-convergence
@article{CMUC_2002__43_2_a13,
     author = {Capone, Claudia},
     title = {Quasiharmonic fields and {Beltrami} operators},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {363--377},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2002},
     mrnumber = {1922134},
     zbl = {1069.35024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a13/}
}
TY  - JOUR
AU  - Capone, Claudia
TI  - Quasiharmonic fields and Beltrami operators
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 363
EP  - 377
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a13/
LA  - en
ID  - CMUC_2002__43_2_a13
ER  - 
%0 Journal Article
%A Capone, Claudia
%T Quasiharmonic fields and Beltrami operators
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 363-377
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a13/
%G en
%F CMUC_2002__43_2_a13
Capone, Claudia. Quasiharmonic fields and Beltrami operators. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 2, pp. 363-377. http://geodesic.mathdoc.fr/item/CMUC_2002__43_2_a13/