On the convergence of certain sums of independent random elements
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 77-81.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note we investigate the relationship between the convergence of the sequence $\{S_{n}\}$ of sums of independent random elements of the form $S_{n}=\sum_{i=1}^{n}\varepsilon_{i}x_{i}$ (where $\varepsilon_{i}$ takes the values $\pm\,1$ with the same probability and $x_{i}$ belongs to a real Banach space $X$ for each $i\in \Bbb N$) and the existence of certain weakly unconditionally Cauchy subseries of $\sum_{n=1}^{\infty}x_{n}$.
Classification : 46B09, 46B15, 60B12
Keywords: independent random elements; copy of $c_{0}$; Pettis integrable function; perfect measure space
@article{CMUC_2002__43_1_a6,
     author = {Ferrando, J. C.},
     title = {On the convergence of certain sums of independent random elements},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {77--81},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2002},
     mrnumber = {1903308},
     zbl = {1090.46009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a6/}
}
TY  - JOUR
AU  - Ferrando, J. C.
TI  - On the convergence of certain sums of independent random elements
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 77
EP  - 81
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a6/
LA  - en
ID  - CMUC_2002__43_1_a6
ER  - 
%0 Journal Article
%A Ferrando, J. C.
%T On the convergence of certain sums of independent random elements
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 77-81
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a6/
%G en
%F CMUC_2002__43_1_a6
Ferrando, J. C. On the convergence of certain sums of independent random elements. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 77-81. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a6/