On algebra homomorphisms in complex almost $f$-algebras
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 23-31.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Extensions of order bounded linear operators on an Archimedean vector lattice to its relatively uniform completion are considered and are applied to show that the multiplication in an Archimedean lattice ordered algebra can be extended, in a unique way, to its relatively uniform completion. This is applied to show, among other things, that any order bounded algebra homomorphism on a complex Archimedean almost $f$-algebra is a lattice homomorphism.
Classification : 06F20, 06F25, 46A40
Keywords: vector lattice; order bounded operator; lattice ordered algebra; $f$-algebra; almost $f$-algebra
@article{CMUC_2002__43_1_a2,
     author = {Triki, Abdelmajid},
     title = {On algebra homomorphisms in complex almost $f$-algebras},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {23--31},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2002},
     mrnumber = {1903304},
     zbl = {1070.06008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a2/}
}
TY  - JOUR
AU  - Triki, Abdelmajid
TI  - On algebra homomorphisms in complex almost $f$-algebras
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 23
EP  - 31
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a2/
LA  - en
ID  - CMUC_2002__43_1_a2
ER  - 
%0 Journal Article
%A Triki, Abdelmajid
%T On algebra homomorphisms in complex almost $f$-algebras
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 23-31
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a2/
%G en
%F CMUC_2002__43_1_a2
Triki, Abdelmajid. On algebra homomorphisms in complex almost $f$-algebras. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 23-31. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a2/