A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 175-179.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, a simple proof is given for the following theorem due to Blair [7], Blair-Hager [8] and Hager-Johnson [12]: A Tychonoff space $X$ is $z$-embedded in every larger Tychonoff space if and only if $X$ is almost compact or Lindelöf. We also give a simple proof of a recent theorem of Bella-Yaschenko [6] on absolute embeddings.
Classification : 54C25, 54C45, 54D20
Keywords: absolute $z$-embedding; absolute $C$-embedding; absolute $C^*$-embedding; absolute embeddings; almost compact; Lindelöf; compact; pseudocompact
@article{CMUC_2002__43_1_a15,
     author = {Yamazaki, Kaori},
     title = {A proof for the {Blair-Hager-Johnson} theorem on absolute $z$-embedding},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {175--179},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2002},
     mrnumber = {1903317},
     zbl = {1090.54009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a15/}
}
TY  - JOUR
AU  - Yamazaki, Kaori
TI  - A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 175
EP  - 179
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a15/
LA  - en
ID  - CMUC_2002__43_1_a15
ER  - 
%0 Journal Article
%A Yamazaki, Kaori
%T A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 175-179
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a15/
%G en
%F CMUC_2002__43_1_a15
Yamazaki, Kaori. A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 175-179. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a15/