Disasters in metric topology without choice
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 165-174.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that it is consistent with ZF that there is a dense-in-itself compact metric space $(X,d)$ which has the countable chain condition (ccc), but $X$ is neither separable nor second countable. It is also shown that $X$ has an open dense subspace which is not paracompact and that in ZF the Principle of Dependent Choice, DC, does not imply {\it the disjoint union of metrizable spaces is normal\/}.
Classification : 03E25, 54A35, 54D20, 54E35, 54E45, 54F05
Keywords: Axiom of Choice; Axiom of Multiple Choice; Principle of Dependent Choice; Ordering Principle; metric spaces; separable metric spaces; second countable metric spaces; paracompact spaces; compact T$_2$ spaces; ccc spaces.
@article{CMUC_2002__43_1_a14,
     author = {Tachtsis, Eleftherios},
     title = {Disasters in metric topology without choice},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {165--174},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2002},
     mrnumber = {1903316},
     zbl = {1072.03030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a14/}
}
TY  - JOUR
AU  - Tachtsis, Eleftherios
TI  - Disasters in metric topology without choice
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 165
EP  - 174
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a14/
LA  - en
ID  - CMUC_2002__43_1_a14
ER  - 
%0 Journal Article
%A Tachtsis, Eleftherios
%T Disasters in metric topology without choice
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 165-174
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a14/
%G en
%F CMUC_2002__43_1_a14
Tachtsis, Eleftherios. Disasters in metric topology without choice. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 165-174. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a14/