Disasters in metric topology without choice
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 165-174
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that it is consistent with ZF that there is a dense-in-itself compact metric space $(X,d)$ which has the countable chain condition (ccc), but $X$ is neither separable nor second countable. It is also shown that $X$ has an open dense subspace which is not paracompact and that in ZF the Principle of Dependent Choice, DC, does not imply {\it the disjoint union of metrizable spaces is normal\/}.
Classification :
03E25, 54A35, 54D20, 54E35, 54E45, 54F05
Keywords: Axiom of Choice; Axiom of Multiple Choice; Principle of Dependent Choice; Ordering Principle; metric spaces; separable metric spaces; second countable metric spaces; paracompact spaces; compact T$_2$ spaces; ccc spaces.
Keywords: Axiom of Choice; Axiom of Multiple Choice; Principle of Dependent Choice; Ordering Principle; metric spaces; separable metric spaces; second countable metric spaces; paracompact spaces; compact T$_2$ spaces; ccc spaces.
@article{CMUC_2002__43_1_a14,
author = {Tachtsis, Eleftherios},
title = {Disasters in metric topology without choice},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {165--174},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2002},
mrnumber = {1903316},
zbl = {1072.03030},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a14/}
}
Tachtsis, Eleftherios. Disasters in metric topology without choice. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 165-174. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a14/