An example of a $\Cal C^{1,1}$ function, which is not a d.c. function
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 149-154.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X = \ell_p$, $p \in (2,+\infty)$. We construct a function $f:X \to \Bbb R$ which has Lipschitz Fréchet derivative on $X$ but is not a d.c. function.
Classification : 26B25, 46B20, 46G05
Keywords: Lipschitz Fréchet derivative; d.c. functions
@article{CMUC_2002__43_1_a11,
     author = {Zelen\'y, Miroslav},
     title = {An example of a $\Cal C^{1,1}$ function, which is not a d.c. function},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {149--154},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2002},
     mrnumber = {1903313},
     zbl = {1090.46012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a11/}
}
TY  - JOUR
AU  - Zelený, Miroslav
TI  - An example of a $\Cal C^{1,1}$ function, which is not a d.c. function
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 149
EP  - 154
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a11/
LA  - en
ID  - CMUC_2002__43_1_a11
ER  - 
%0 Journal Article
%A Zelený, Miroslav
%T An example of a $\Cal C^{1,1}$ function, which is not a d.c. function
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 149-154
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a11/
%G en
%F CMUC_2002__43_1_a11
Zelený, Miroslav. An example of a $\Cal C^{1,1}$ function, which is not a d.c. function. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 149-154. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a11/