Riesz angles of Orlicz sequence spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 133-147
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We introduce some practical calculation of the Riesz angles in Orlicz sequence spaces equipped with Luxemburg norm and Orlicz norm. For an $N$-function $\Phi(u)$ whose index function is monotonous, the exact value $a(l^{(\Phi)})$ of the Orlicz sequence space with Luxemburg norm is $a(l^{(\Phi)})=2^{\frac{1}{C^0_{\Phi}}}$ or $a(l^{(\Phi)})=\frac{\Phi^{-1}(1)}{\Phi^{-1}(\frac{1}{2})}$. The Riesz angles of Orlicz space $l^\Phi$ with Orlicz norm has the estimation $\max (2\beta^0_{\Psi}, 2\beta '_{\Psi})\leq a(l^{\Phi}) \leq\frac{2}{\theta^0_{\Phi}}$.
Classification :
46B45, 46E30
Keywords: Orlicz space; $N$-function; index function; Riesz angle
Keywords: Orlicz space; $N$-function; index function; Riesz angle
@article{CMUC_2002__43_1_a10,
author = {Yan, Ya Qiang},
title = {Riesz angles of {Orlicz} sequence spaces},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {133--147},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2002},
mrnumber = {1903312},
zbl = {1090.46024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a10/}
}
Yan, Ya Qiang. Riesz angles of Orlicz sequence spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 133-147. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a10/