A characterization of $C_2(q)$ where $q>5$
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 9-21.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The order of every finite group $G$ can be expressed as a product of coprime positive integers $m_1,\dots, m_t$ such that $\pi (m_i)$ is a connected component of the prime graph of $G$. The integers $m_1,\dots, m_t$ are called the order components of $G$. Some non-abelian simple groups are known to be uniquely determined by their order components. As the main result of this paper, we show that the projective symplectic groups $C_2(q)$ where $q>5$ are also uniquely determined by their order components. As corollaries of this result, the validities of a conjecture by J.G. Thompson and a conjecture by W. Shi and J. Be for $C_2(q)$ with $q>5$ are obtained.
Classification : 05C25, 20D05, 20D60, 20G40
Keywords: prime graph; order component; finite group; simple group
@article{CMUC_2002__43_1_a1,
     author = {Iranmanesh, A. and Khosravi, B.},
     title = {A characterization of $C_2(q)$ where $q>5$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {9--21},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2002},
     mrnumber = {1903303},
     zbl = {1068.20020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a1/}
}
TY  - JOUR
AU  - Iranmanesh, A.
AU  - Khosravi, B.
TI  - A characterization of $C_2(q)$ where $q>5$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 9
EP  - 21
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a1/
LA  - en
ID  - CMUC_2002__43_1_a1
ER  - 
%0 Journal Article
%A Iranmanesh, A.
%A Khosravi, B.
%T A characterization of $C_2(q)$ where $q>5$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 9-21
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a1/
%G en
%F CMUC_2002__43_1_a1
Iranmanesh, A.; Khosravi, B. A characterization of $C_2(q)$ where $q>5$. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 9-21. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a1/