Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 1-8
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate finite Moufang loops with a unique nonidentity commutator which are not associative, but all of whose proper subloops are associative. Curiously, perhaps, such loops turn out to be ``ring alternative'', in the sense that their loop rings are alternative rings.
Classification :
17D05, 20N05
Keywords: Moufang loops; RA loops; alternative rings; minimal nonassociativity
Keywords: Moufang loops; RA loops; alternative rings; minimal nonassociativity
@article{CMUC_2002__43_1_a0,
author = {Chein, Orin and Goodaire, Edgar G.},
title = {Minimally nonassociative {Moufang} loops with a unique nonidentity commutator are ring alternative},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {1--8},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2002},
mrnumber = {1903302},
zbl = {1068.20069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a0/}
}
TY - JOUR AU - Chein, Orin AU - Goodaire, Edgar G. TI - Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative JO - Commentationes Mathematicae Universitatis Carolinae PY - 2002 SP - 1 EP - 8 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a0/ LA - en ID - CMUC_2002__43_1_a0 ER -
%0 Journal Article %A Chein, Orin %A Goodaire, Edgar G. %T Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative %J Commentationes Mathematicae Universitatis Carolinae %D 2002 %P 1-8 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a0/ %G en %F CMUC_2002__43_1_a0
Chein, Orin; Goodaire, Edgar G. Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a0/