Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative
Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate finite Moufang loops with a unique nonidentity commutator which are not associative, but all of whose proper subloops are associative. Curiously, perhaps, such loops turn out to be ``ring alternative'', in the sense that their loop rings are alternative rings.
Classification : 17D05, 20N05
Keywords: Moufang loops; RA loops; alternative rings; minimal nonassociativity
@article{CMUC_2002__43_1_a0,
     author = {Chein, Orin and Goodaire, Edgar G.},
     title = {Minimally nonassociative {Moufang} loops with a unique nonidentity commutator are ring alternative},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2002},
     mrnumber = {1903302},
     zbl = {1068.20069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a0/}
}
TY  - JOUR
AU  - Chein, Orin
AU  - Goodaire, Edgar G.
TI  - Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2002
SP  - 1
EP  - 8
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a0/
LA  - en
ID  - CMUC_2002__43_1_a0
ER  - 
%0 Journal Article
%A Chein, Orin
%A Goodaire, Edgar G.
%T Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative
%J Commentationes Mathematicae Universitatis Carolinae
%D 2002
%P 1-8
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a0/
%G en
%F CMUC_2002__43_1_a0
Chein, Orin; Goodaire, Edgar G. Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative. Commentationes Mathematicae Universitatis Carolinae, Tome 43 (2002) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/CMUC_2002__43_1_a0/