Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 655-663.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $r,s,q, m,n\in \Bbb N$ be such that $s\geq r\leq q$. Let $Y$ be a fibered manifold with $m$-dimensional basis and $n$-dimensional fibers. All natural affinors on $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are classified. It is deduced that there is no natural generalized connection on \linebreak $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$. Similar problems with $(J^{r,s}(Y,\Bbb R)_0)^*$ instead of $(J^{r,s,q}(Y,\Bbb R^{1,1})_0)^*$ are solved.
Classification : 53A55, 58A20
Keywords: bundle functors; natural transformations; natural affinors
@article{CMUC_2001__42_4_a6,
     author = {Mikulski, W{\l}odzimierz M.},
     title = {Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {655--663},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2001},
     mrnumber = {1883375},
     zbl = {1090.58501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a6/}
}
TY  - JOUR
AU  - Mikulski, Włodzimierz M.
TI  - Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 655
EP  - 663
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a6/
LA  - en
ID  - CMUC_2001__42_4_a6
ER  - 
%0 Journal Article
%A Mikulski, Włodzimierz M.
%T Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 655-663
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a6/
%G en
%F CMUC_2001__42_4_a6
Mikulski, Włodzimierz M. Natural affinors on $(J^{r,s,q}(.,\Bbb R^{1,1})_0)^*$. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 655-663. http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a6/