Selections on $\Psi$-spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 763-769.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that if $\Cal A$ is an uncountable AD (almost disjoint) family of subsets of $\omega$ then the space $\Psi(\Cal A)$ does not admit a continuous selection; moreover, if $\Cal A$ is maximal then $\Psi(\Cal A)$ does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.
Classification : 03E05, 54B20, 54C65
Keywords: MAD family; Vietoris topology; continuous selection
@article{CMUC_2001__42_4_a15,
     author = {Hru\v{s}\'ak, M. and Szeptycki, P. J. and Tomita, A. H.},
     title = {Selections on $\Psi$-spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {763--769},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2001},
     mrnumber = {1883384},
     zbl = {1090.54506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a15/}
}
TY  - JOUR
AU  - Hrušák, M.
AU  - Szeptycki, P. J.
AU  - Tomita, A. H.
TI  - Selections on $\Psi$-spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 763
EP  - 769
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a15/
LA  - en
ID  - CMUC_2001__42_4_a15
ER  - 
%0 Journal Article
%A Hrušák, M.
%A Szeptycki, P. J.
%A Tomita, A. H.
%T Selections on $\Psi$-spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 763-769
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a15/
%G en
%F CMUC_2001__42_4_a15
Hrušák, M.; Szeptycki, P. J.; Tomita, A. H. Selections on $\Psi$-spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 763-769. http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a15/