On the Dirichlet problem for functions of the first Baire class
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 721-728
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\Cal H$ be a simplicial function space on a metric compact space $X$. Then the Choquet boundary $\operatorname{Ch}X$ of $\Cal H$ is an $F_\sigma$-set if and only if given any bounded Baire-one function $f$ on $\operatorname{Ch}X$ there is an $\Cal H$-affine bounded Baire-one function $h$ on $X$ such that $h=f$ on $\operatorname{Ch}X$. This theorem yields an answer to a problem of F. Jellett from [8] in the case of a metrizable set $X$.
Classification :
26A21, 31B05, 31C45, 46A55
Keywords: weak Dirichlet problem; function space; Choquet simplexes; Baire-one functions
Keywords: weak Dirichlet problem; function space; Choquet simplexes; Baire-one functions
@article{CMUC_2001__42_4_a11,
author = {Spurn\'y, Ji\v{r}{\'\i}},
title = {On the {Dirichlet} problem for functions of the first {Baire} class},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {721--728},
publisher = {mathdoc},
volume = {42},
number = {4},
year = {2001},
mrnumber = {1883380},
zbl = {1090.46500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a11/}
}
TY - JOUR AU - Spurný, Jiří TI - On the Dirichlet problem for functions of the first Baire class JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 721 EP - 728 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a11/ LA - en ID - CMUC_2001__42_4_a11 ER -
Spurný, Jiří. On the Dirichlet problem for functions of the first Baire class. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 721-728. http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a11/