On the Dirichlet problem for functions of the first Baire class
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 721-728.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\Cal H$ be a simplicial function space on a metric compact space $X$. Then the Choquet boundary $\operatorname{Ch}X$ of $\Cal H$ is an $F_\sigma$-set if and only if given any bounded Baire-one function $f$ on $\operatorname{Ch}X$ there is an $\Cal H$-affine bounded Baire-one function $h$ on $X$ such that $h=f$ on $\operatorname{Ch}X$. This theorem yields an answer to a problem of F. Jellett from [8] in the case of a metrizable set $X$.
Classification : 26A21, 31B05, 31C45, 46A55
Keywords: weak Dirichlet problem; function space; Choquet simplexes; Baire-one functions
@article{CMUC_2001__42_4_a11,
     author = {Spurn\'y, Ji\v{r}{\'\i}},
     title = {On the {Dirichlet} problem for functions of the first {Baire} class},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {721--728},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2001},
     mrnumber = {1883380},
     zbl = {1090.46500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a11/}
}
TY  - JOUR
AU  - Spurný, Jiří
TI  - On the Dirichlet problem for functions of the first Baire class
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 721
EP  - 728
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a11/
LA  - en
ID  - CMUC_2001__42_4_a11
ER  - 
%0 Journal Article
%A Spurný, Jiří
%T On the Dirichlet problem for functions of the first Baire class
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 721-728
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a11/
%G en
%F CMUC_2001__42_4_a11
Spurný, Jiří. On the Dirichlet problem for functions of the first Baire class. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 4, pp. 721-728. http://geodesic.mathdoc.fr/item/CMUC_2001__42_4_a11/