Countable compactness and $p$-limits
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 521-527.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For $\emptyset \neq M \subseteq \omega^*$, we say that $X$ is quasi $M$-compact, if for every $f: \omega \rightarrow X$ there is $p \in M$ such that $\overline{f}(p) \in X$, where $\overline{f}$ is the Stone-Čech extension of $f$. In this context, a space $X$ is countably compact iff $X$ is quasi $\omega^*$-compact. If $X$ is quasi $M$-compact and $M$ is either finite or countable discrete in $\omega^*$, then all powers of $X$ are countably compact. Assuming $CH$, we give an example of a countable subset $M \subseteq \omega^*$ and a quasi $M$-compact space $X$ whose square is not countably compact, and show that in a model of A. Blass and S. Shelah every quasi $M$-compact space is $p$-compact (= quasi $\{p\}$-compact) for some $p \in \omega^*$, whenever $M \in [\omega^*]^{ {\frak c}}$. We prove that if $\emptyset \notin \{ T_\xi :\, \xi 2^{{\frak c}} \} \subseteq [\omega^*]^{ 2^{{\frak c}}}$, then there is a countably compact space $X$ that is not quasi $T_\xi$-compact for every $\xi 2^{{\frak c}}$; hence, if $2^{{\frak c}}$ is regular, then there is a countably compact space $X$ such that $X$ is not quasi $M$-compact for any $M \in [\omega^*]^{ 2^{{\frak c}}}$. We list some open problems.
Classification : 54A20, 54A35, 54B99, 54D20, 54D30
Keywords: $p$-limit; $p$-compact; almost $p$-compact; quasi $M$-compact; countably compact
@article{CMUC_2001__42_3_a9,
     author = {Garc{\'\i}a-Ferreira, S. and Tomita, A. H.},
     title = {Countable compactness and $p$-limits},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {521--527},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2001},
     mrnumber = {1860240},
     zbl = {1053.54003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a9/}
}
TY  - JOUR
AU  - García-Ferreira, S.
AU  - Tomita, A. H.
TI  - Countable compactness and $p$-limits
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 521
EP  - 527
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a9/
LA  - en
ID  - CMUC_2001__42_3_a9
ER  - 
%0 Journal Article
%A García-Ferreira, S.
%A Tomita, A. H.
%T Countable compactness and $p$-limits
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 521-527
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a9/
%G en
%F CMUC_2001__42_3_a9
García-Ferreira, S.; Tomita, A. H. Countable compactness and $p$-limits. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 521-527. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a9/