Countable compactness and $p$-limits
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 521-527
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For $\emptyset \neq M \subseteq \omega^*$, we say that $X$ is quasi $M$-compact, if for every $f: \omega \rightarrow X$ there is $p \in M$ such that $\overline{f}(p) \in X$, where $\overline{f}$ is the Stone-Čech extension of $f$. In this context, a space $X$ is countably compact iff $X$ is quasi $\omega^*$-compact. If $X$ is quasi $M$-compact and $M$ is either finite or countable discrete in $\omega^*$, then all powers of $X$ are countably compact. Assuming $CH$, we give an example of a countable subset $M \subseteq \omega^*$ and a quasi $M$-compact space $X$ whose square is not countably compact, and show that in a model of A. Blass and S. Shelah every quasi $M$-compact space is $p$-compact (= quasi $\{p\}$-compact) for some $p \in \omega^*$, whenever $M \in [\omega^*]^{ {\frak c}}$. We prove that if $\emptyset \notin \{ T_\xi :\, \xi 2^{{\frak c}} \} \subseteq [\omega^*]^{ 2^{{\frak c}}}$, then there is a countably compact space $X$ that is not quasi $T_\xi$-compact for every $\xi 2^{{\frak c}}$; hence, if $2^{{\frak c}}$ is regular, then there is a countably compact space $X$ such that $X$ is not quasi $M$-compact for any $M \in [\omega^*]^{ 2^{{\frak c}}}$. We list some open problems.
Classification :
54A20, 54A35, 54B99, 54D20, 54D30
Keywords: $p$-limit; $p$-compact; almost $p$-compact; quasi $M$-compact; countably compact
Keywords: $p$-limit; $p$-compact; almost $p$-compact; quasi $M$-compact; countably compact
@article{CMUC_2001__42_3_a9,
author = {Garc{\'\i}a-Ferreira, S. and Tomita, A. H.},
title = {Countable compactness and $p$-limits},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {521--527},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2001},
mrnumber = {1860240},
zbl = {1053.54003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a9/}
}
TY - JOUR AU - García-Ferreira, S. AU - Tomita, A. H. TI - Countable compactness and $p$-limits JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 521 EP - 527 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a9/ LA - en ID - CMUC_2001__42_3_a9 ER -
García-Ferreira, S.; Tomita, A. H. Countable compactness and $p$-limits. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 521-527. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a9/