On $\alpha$-normal and $\beta$-normal spaces
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 507-519.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We define two natural normality type properties, $\alpha$-normality and $\beta$-normality, and compare these notions to normality. A natural weakening of Jones Lemma immediately leads to generalizations of some important results on normal spaces. We observe that every $\beta$-normal, pseudocompact space is countably compact, and show that if $X$ is a dense subspace of a product of metrizable spaces, then $X$ is normal if and only if $X$ is $\beta$-normal. All hereditarily separable spaces are $\alpha $-normal. A space is normal if and only if it is $\kappa$-normal and $\beta$-normal. Central results of the paper are contained in Sections 3 and 4. Several examples are given, including an example (identified by R.Z. Buzyakova) of an $\alpha$-normal, $\kappa $-normal, and not $\beta$-normal space, which is, in fact, a pseudocompact topological group. We observe that under CH there exists a locally compact Hausdorff hereditarily $\alpha $-normal non-normal space (Theorem 3.3). This example is related to the main result of Section 4, which is a version of the famous Katětov's theorem on metrizability of a compactum the third power of which is hereditarily normal (Corollary 4.3). We also present a Tychonoff space $X$ such that no dense subspace of $X$ is $\alpha $-normal (Section 3).
Classification : 54D15, 54D65, 54G20
Keywords: normal; $\alpha$-normal; $\beta$-normal; $\kappa$-normal; weakly normal; extremally disconnected; $C_p(X)$; Lindelöf; compact; pseudocompact; countably compact; hereditarily separable; hereditarily $\alpha $-normal; property $wD$; weakly perfect; first countable
@article{CMUC_2001__42_3_a8,
     author = {Arhangel'skii, A. V. and Ludwig, L.},
     title = {On $\alpha$-normal and $\beta$-normal spaces},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {507--519},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2001},
     mrnumber = {1860239},
     zbl = {1053.54030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a8/}
}
TY  - JOUR
AU  - Arhangel'skii, A. V.
AU  - Ludwig, L.
TI  - On $\alpha$-normal and $\beta$-normal spaces
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 507
EP  - 519
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a8/
LA  - en
ID  - CMUC_2001__42_3_a8
ER  - 
%0 Journal Article
%A Arhangel'skii, A. V.
%A Ludwig, L.
%T On $\alpha$-normal and $\beta$-normal spaces
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 507-519
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a8/
%G en
%F CMUC_2001__42_3_a8
Arhangel'skii, A. V.; Ludwig, L. On $\alpha$-normal and $\beta$-normal spaces. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 507-519. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a8/