Integrability for vector-valued minimizers of some variational integrals
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 469-479.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that the higher integrability of the data $f, f_0$ improves on the integrability of minimizers $u$ of functionals $\Cal F$, whose model is $$ \int_{\Omega} \left[|Du|^p + (\operatorname{det} (Du))^2 - \langle f,Du \rangle + \langle f_0,u \rangle \right] dx, $$ where $u:\Omega\subset \Bbb R^n\to \Bbb R^n$ and $p\ge 2$.
Classification : 35J20, 35J60, 49J20, 49J53, 49N60
Keywords: calculus of variations; minimizers; regularity
@article{CMUC_2001__42_3_a4,
     author = {Leonetti, Francesco and Siepe, Francesco},
     title = {Integrability for vector-valued minimizers of some variational integrals},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {469--479},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2001},
     mrnumber = {1860235},
     zbl = {1051.49023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a4/}
}
TY  - JOUR
AU  - Leonetti, Francesco
AU  - Siepe, Francesco
TI  - Integrability for vector-valued minimizers of some variational integrals
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 469
EP  - 479
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a4/
LA  - en
ID  - CMUC_2001__42_3_a4
ER  - 
%0 Journal Article
%A Leonetti, Francesco
%A Siepe, Francesco
%T Integrability for vector-valued minimizers of some variational integrals
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 469-479
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a4/
%G en
%F CMUC_2001__42_3_a4
Leonetti, Francesco; Siepe, Francesco. Integrability for vector-valued minimizers of some variational integrals. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 469-479. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a4/