Integrability for vector-valued minimizers of some variational integrals
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 469-479
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove that the higher integrability of the data $f, f_0$ improves on the integrability of minimizers $u$ of functionals $\Cal F$, whose model is $$ \int_{\Omega} \left[|Du|^p + (\operatorname{det} (Du))^2 - \langle f,Du \rangle + \langle f_0,u \rangle \right] dx, $$ where $u:\Omega\subset \Bbb R^n\to \Bbb R^n$ and $p\ge 2$.
Classification :
35J20, 35J60, 49J20, 49J53, 49N60
Keywords: calculus of variations; minimizers; regularity
Keywords: calculus of variations; minimizers; regularity
@article{CMUC_2001__42_3_a4,
author = {Leonetti, Francesco and Siepe, Francesco},
title = {Integrability for vector-valued minimizers of some variational integrals},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {469--479},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2001},
mrnumber = {1860235},
zbl = {1051.49023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a4/}
}
TY - JOUR AU - Leonetti, Francesco AU - Siepe, Francesco TI - Integrability for vector-valued minimizers of some variational integrals JO - Commentationes Mathematicae Universitatis Carolinae PY - 2001 SP - 469 EP - 479 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a4/ LA - en ID - CMUC_2001__42_3_a4 ER -
%0 Journal Article %A Leonetti, Francesco %A Siepe, Francesco %T Integrability for vector-valued minimizers of some variational integrals %J Commentationes Mathematicae Universitatis Carolinae %D 2001 %P 469-479 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a4/ %G en %F CMUC_2001__42_3_a4
Leonetti, Francesco; Siepe, Francesco. Integrability for vector-valued minimizers of some variational integrals. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 469-479. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a4/