On projectively quotient functors
Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 561-573.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce notions of projectively quotient, open, and closed functors. We give sufficient conditions for a functor to be projectively quotient. In particular, any finitary normal functor is projectively quotient. We prove that the sufficient conditions obtained are necessary for an arbitrary subfunctor $\Cal F$ of the functor $\Cal P$ of probability measures. At the same time, any ``good'' functor is neither projectively open nor projectively closed.
Classification : 18B30, 54B30, 54D30
Keywords: projectively closed functor; finitary functor; functor of probability measures
@article{CMUC_2001__42_3_a14,
     author = {Zhuraev, T. F.},
     title = {On projectively quotient functors},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {561--573},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2001},
     mrnumber = {1860245},
     zbl = {1053.54019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a14/}
}
TY  - JOUR
AU  - Zhuraev, T. F.
TI  - On projectively quotient functors
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2001
SP  - 561
EP  - 573
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a14/
LA  - en
ID  - CMUC_2001__42_3_a14
ER  - 
%0 Journal Article
%A Zhuraev, T. F.
%T On projectively quotient functors
%J Commentationes Mathematicae Universitatis Carolinae
%D 2001
%P 561-573
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a14/
%G en
%F CMUC_2001__42_3_a14
Zhuraev, T. F. On projectively quotient functors. Commentationes Mathematicae Universitatis Carolinae, Tome 42 (2001) no. 3, pp. 561-573. http://geodesic.mathdoc.fr/item/CMUC_2001__42_3_a14/